If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)-50x+600=0
a = 1; b = -50; c = +600;
Δ = b2-4ac
Δ = -502-4·1·600
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-10}{2*1}=\frac{40}{2} =20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+10}{2*1}=\frac{60}{2} =30 $
| 30-x=3- | | 10x-2x-6=x-20 | | M-8=3×m | | 2+2+20j=0 | | 3(x+2)^2=72 | | -20y^2+13y-2=0 | | 77x-5=105 | | (-100/q^2)-1+(2/3)q=0 | | 5x+(13/2x)+264=410 | | 100X=105y | | 4x(x-4)=2x+8(x-4) | | 100,000=40t+100 | | 0=250t-4.9t^2 | | -(3-27)=-6c | | -147=-3(5a-11) | | 3x^2+11x-50=-8 | | 225=+5(4b+13) | | 11y+6=28 | | 11y+6=14 | | −4x+7=−1 | | 11y+6=48 | | 11y+6=12 | | 60=(-5a+10) | | 11y+6=61 | | 11y+6=31 | | 5x=7x-19 | | 11y+6=60 | | -9(23+8b)=-567 | | 3y+7=60 | | 17.5+44x=-6.5(3x-6) | | 8x-27=60 | | 17.5+4x=19.5-39 |